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a b s t r a c t

The Liouville space spin relaxation theory equations are reformulated in such a way as to avoid the com-
putationally expensive Hamiltonian diagonalization step, replacing it by numerical evaluation of the inte-
grals in the generalized cumulant expansion. The resulting algorithm is particularly useful in the cases
where the static part of the Hamiltonian is dominated by interactions other than Zeeman (e.g. in quad-
rupolar resonance, low-field EPR and Spin Chemistry). When used together with state space restriction
tools, the algorithm reported is capable of computing full relaxation superoperators for NMR systems
with more than 15 spins.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The semi-classical description of relaxation in spin systems, in which a one-way coupling to the lattice is introduced using perturbation
theory [1–5], is very popular in magnetic resonance because it provides readily interpretable data on structure and dynamics of many
interesting systems, such as biomolecules and polymers [6]. The most convenient perturbative relaxation theory [2,4] is well adapted
for liquid-state NMR/ESR spectroscopy and uses second-order time-dependent perturbation treatment. In recent decades, it has been re-
fined, particularly in the spectral density part [7,8], into a very powerful tool for the investigation of molecular structure and dynamics [6].
In its present form, the second-order theory is mostly credited to Redfield [4], who usually points at an earlier paper by Wangsness and
Bloch [5] – hence the BRW abbreviation. Ultimately, all perturbative relaxation theories with classical lattices are special cases of a very
powerful formalism of generalized cumulant expansions derived by Kubo and Freed [9,10].

As interesting spin systems grew larger over the years, one specific computational bottleneck has emerged in the otherwise excellent
BRW theory – the requirement that the basis operators for the expansion of the dynamic part of the Hamiltonian be the eigenoperators of
the static Hamiltonian commutation superoperator [1,2,4]:
Ĥ1ðtÞ ¼
X

k

fkðtÞV̂ k; ½Ĥ0; V̂ k� ¼
^̂H 0 V̂ k ¼ xk V̂ k ð1Þ
(e.g. Eq. (2.2) in the original formulation [4] and Eqs. (12)–(14) in the recent review by Goldman [2]). In the case where the static Hamiltonian
is dominated by Zeeman interactions (high-field NMR and ESR spectroscopy), these are just irreducible spherical tensors [11]:
½L̂Z; T̂ lm� ¼ mT̂ lm; ð2Þ
but in most other cases these operators are unknown, and the Hamiltonian superoperator must be diagonalized to obtain them. In situations
where matrix dimension exceeds n = 104, diagonalization is not possible because of the O(n3) multiplications required and because the eigen-
vectors of sparse matrices are in most cases dense and overflow the computer memory.

In this communication, a simple solution to this problem is suggested, using the fact that evaluation of the exponential propagator
expð�i ^̂H 0DsÞ for Ds � k ^̂H 0k�1 is cheaper than ^̂H 0 diagonalization (and feasible for matrix dimensions in excess of 105, with the sparsity
preserved). Once the propagator is available, it becomes easy to evaluate the integral in the BRW master equation numerically. The result-
ll rights reserved.
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ing algorithm (essentially a numerical quadrature) is simple, general and computer-friendly, and has been implemented in the SPINACH
library (MATLAB source code is available at http://spindynamics.org). Used together with the recently developed state space restriction
tools for Liouville space [12–14], this puts the BRW relaxation theory treatment of large spin systems within reach.

2. Rotational factorization of the dynamic Hamiltonian

To enable the treatment of arbitrary spin systems and to facilitate the evaluation of correlation functions in Section 3, the Hamiltonian
needs to be transformed into the irreducible spherical tensor form, which permits simple treatment of rotations [3,11,15,16] and gives
a straightforward avenue to the rotational correlation functions [17,18]. For the traceless part of a bilinear interaction between spins
L and S:
T̂ ð2Þ0 ðL; SÞ ¼ þ
ffiffiffi
2
3

r
L̂Z ŜZ �

1
4

L̂þ Ŝ� þ L̂� Ŝþ
� �� �

T̂ ð2Þ�1ðL; SÞ ¼ þ
1
2

L̂Z Ŝ� þ L̂� ŜZ

� �
; T̂ ð2Þ1 ðL; SÞ ¼ �

1
2

L̂Z Ŝþ þ L̂þ ŜZ

� �

T̂ ð2Þ�2ðL; SÞ ¼ þ
1
2

L̂� Ŝ�; T̂ ð2Þ2 ðL; SÞ ¼ þ
1
2

L̂þ Ŝþ

ð3Þ
(~̂L to be replaced with~B in the case of Zeeman interaction and with ~̂S in the case of quadratic interactions, such as quadrupolar or ZFS). For a
traceless interaction tensor A with eigenvalues {aXX,aYY,aZZ}, written in its eigenframe:
~̂L � A � ~̂S ¼ aXX L̂X ŜX þ aYY L̂Y ŜY þ aZZ L̂Z ŜZ ¼
2aZZ � ðaXX þ aYYÞffiffiffi

6
p T̂ ð2Þ0 ðL; SÞ þ

aXX � aYY

2
T̂ ð2Þ�2ðL; SÞ þ

aXX � aYY

2
T̂ ð2Þ2 ðL; SÞ ð4Þ
Irreducible spherical tensors form the basis of irreducible representations of the rotation group [19] and therefore have very regular rotation
properties [20]:
^̂RðT̂ ðlÞk Þ ¼
Xl

m¼�l

T̂ ðlÞm D
ðlÞ
mk; ð5Þ
where ^̂R denotes a rotation (which for our purposes is a superoperator) and D
ðlÞ
m;k are Wigner functions, accepting any rotation specification

(Euler angles, quaternions, etc.) as an argument. For a multi-spin system in a rigid molecule, with the stochastic molecular rotation ^̂RmolðtÞ
applied on top of static internal rotation ^̂R int for each interaction, we therefore have:
Ĥ ¼ Ĥ iso þ ^̂R molðtÞ
X

L

^̂R L
int

RhL

2
T̂ ð2Þ2 ðB; LÞ þ T̂ ð2Þ�2ðB; LÞ
� �

þ AxLffiffiffi
6
p T̂ ð2Þ0 ðB; LÞ

� � !

þ ^̂RmolðtÞ
X
L;S

^̂R LS
int

RhLS

2
T̂ ð2Þ2 ðL; SÞ þ T̂ ð2Þ�2ðL; SÞ
� �

þ AxLSffiffiffi
6
p T̂ ð2Þ0 ðL; SÞ

� � !

þ ^̂RmolðtÞ
X

S

^̂R SS
int

RhSS

2
T̂ ð2Þ2 ðS; SÞ þ T̂ ð2Þ�2ðS; SÞ
� �

þ AxSSffiffiffi
6
p T̂ ð2Þ0 ðS; SÞ

� � !
ð6Þ
where Ĥ iso is the isotropic part of the Hamiltonian, axiality and rhombicity parameters for each interaction tensor are defined as:
Ax ¼ 2aZZ � ðaXX þ aYYÞ Rh ¼ aXX � aYY; ð7Þ
and the three terms in brackets in Eq. (6) correspond to linear, bilinear and quadratic couplings within the spin system. After we apply the
internal rotations using Eq. (5), the Hamiltonian transforms into:
Ĥ ¼ Ĥ iso þ ^̂R molðtÞ
X

L

X2

m¼�2

T̂ ð2Þm ðB; LÞUmðB; LÞ þ ^̂R molðtÞ
X

LS

X2

m¼�2

T̂ ð2Þm ðL; SÞUmðL; SÞ þ ^̂RmolðtÞ
X

S

X2

m¼�2

T̂ ð2Þm ðS; SÞUmðS; SÞ; ð8Þ
where the interaction amplitudes and orientations in the molecular frame have been collected into internal orientation coefficients:
UmðB; LÞ ¼
RhL

2
D
ð2Þ
m;�2ðB; LÞ þD

ð2Þ
m;2ðB; LÞ

� �
þ AxLffiffiffi

6
p D

ð2Þ
m;0ðB; LÞ

UmðL; SÞ ¼
RhLS

2
D
ð2Þ
m;�2ðL; SÞ þD

ð2Þ
m;2ðL; SÞ

� �
þ AxLSffiffiffi

6
p D

ð2Þ
m;0ðL; SÞ

UmðS; SÞ ¼
RhSS

2
D
ð2Þ
m;�2ðS; SÞ þD

ð2Þ
m;2ðS; SÞ

� �
þ AxSSffiffiffi

6
p D

ð2Þ
m;0ðS; SÞ;

ð9Þ
where D
ð2Þ
m;k are time-independent Wigner functions [20] specifying the orientation of the corresponding interactions in the molecular frame.

Finally, after we apply Eq. (5) the overall molecular rotation (which is assumed to be time-dependent) in Eq. (8), we obtain
Ĥ ¼ Ĥ iso þ
X2

m¼�2

X2

k¼�2

D
ð2Þ
kmðtÞQ̂ km; ð10Þ
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where all information about the amplitudes and internal orientations of all interactions has been packaged into 25 static operators:
Q̂ km ¼
X

L

UmðB; LÞT̂ ð2Þk ðB; LÞ þ
X

LS

UmðL; SÞT̂ ð2Þk ðL; SÞ þ
X

S

UmðS; SÞT̂ ð2Þk ðS; SÞ: ð11Þ
We will call these operators rotational basis, they are the generalization of the ‘dipolar alphabet’ [1] to the case of multiple arbitrarily oriented
rhombic interactions. Importantly, the software implementations of Eq. (10) are relatively easy to test and debug, because, unlike relaxation
theory, easily verifiable standard results are available for spin system rotations.

3. BRW theory in Liouville space

This section gives the Liouville space version of the well known [1,2,4–6] route towards the BRW relaxation superoperator, taking
advantage of the general rotational factorization given by Eq. (10). We start with the adjoint representation of the Liouville–von Neumann
equation:
@ q̂ðtÞ
@t
¼ �i ^̂H 0 þ ^̂H 1ðtÞ

� �
q̂ðtÞ; ^̂H ¼ adĤ ¼ ½Ĥ; �� ¼ Ĥ � Ê � Ê � ĤT

expð�i ^̂HDtÞq̂ ¼
X1
n¼0

ð�iDtÞn

n!
^̂H n

" #
q̂ ¼

X1
n¼0

ð�iDtÞn

n!
½Ĥ; ½Ĥ; ½. . . ½Ĥ; q̂���� ð12Þ
with the assumption (without loss of generality) that the ensemble average of the dynamic part ^̂H 1ðtÞ is zero. The transformation to the
interaction representation (denoted with R superscript on the operators) with respect to the static Hamiltonian is then performed using
the following relations:
r̂ðtÞ ¼ ei ^̂H 0t q̂ðtÞ ^̂H R
1ðtÞ ¼ ei ^̂H 0t ^̂H 1ðtÞe�i ^̂H 0t ð13Þ
with the result that the static part formally vanishes from Eq. (12) and is replaced by the unitary transformation prescribed by Eq. (13):
@q̂ðtÞ
@t
¼ �i ^̂H 0 þ ^̂H 1ðtÞ

� �
q̂ðtÞ ) @ r̂ðtÞ

@t
¼ �i ^̂H R

1ðtÞr̂ðtÞ; ð14Þ
this can be verified by direct inspection. We can formally integrate this equation
r̂ðtÞ ¼ r̂ð0Þ � i
Z t

0

^̂H R
1ðt0Þr̂ðt0Þdt0 ð15Þ
and re-substitute the result back into Eq. (14) to yield:
@r̂ðtÞ
@t

¼ �i ^̂H R
1ðtÞr̂ð0Þ �

Z t

0

^̂H R
1ðtÞ

^̂H R
1ðt0Þr̂ðt0Þdt0 ð16Þ
If ensemble averaging is performed on this equation, the first term on the right hand side vanishes because
^̂H R
1ðtÞr̂ð0Þ

D E
¼ ei ^̂H 0t ^̂H 1ðtÞ

D E
e�i ^̂H 0t r̂ð0Þ ¼ 0 ð17Þ
(the angle brackets denote the ensemble averaging), and we are left with
@ r̂ðtÞh i
@t

¼ �
Z t

0

^̂H R
1ðtÞ

^̂H R
1ðt0Þr̂ðt0Þ

D E
dt0 ð18Þ
We can now use the rotational factorization derived in Section 2 and take advantage of the fact that it hides the details of the interactions
within the spin system, leaving only the overall molecular rotation explicit:
^̂H 1ðtÞ ¼
X
km

D
ð2Þ
kmðtÞ

^̂Q km ¼
X
km

D
ð2Þ�
km ðtÞ

^̂Q y
km

@ r̂ðtÞh i
@t

¼ �
X
kmpq

Z t

0
D
ð2Þ
kmðtÞD

ð2Þ�
pq ðt0Þ

^̂Q R
kmðtÞ

^̂Q Ry
pqðt0Þrðt0Þ

D E
dt0

ð19Þ
(to facilitate subsequent treatment, one copy of the Hermitian ^̂H R
1ðtÞ superoperator has been pasted in a Hermitian conjugate form). We need

to introduce several significant assumptions at this point [4,21]. Firstly, we shall assume that the spin system dynamics is uncorrelated with
the noise that is driving ^̂H R

1ðtÞ – it would allow us to take ensemble averages separately for the Liouvillian and the state vector part in Eq.
(19):
D
ð2Þ
kmðtÞD

ð2Þ�
pq ðt0Þ

^̂Q R
kmðtÞ

^̂Q Ry
pqðt0Þrðt0Þ

D E
¼ D

ð2Þ
kmðtÞD

ð2Þ�
pq ðt0Þ

D E
^̂Q R

kmðtÞ
^̂Q Ry

pqðt0Þ rðt0Þh i ð20Þ
(the interaction representations of the rotational basis operators evolve deterministically and do not change upon ensemble averaging). It is
convenient to introduce a separate symbol for the rotational correlation functions, which, in the general anisotropic tumbling case can be
different for different values of the k, m, p, q indices [21]:
Gkmpqðt; t0Þ ¼ D
ð2Þ
kmðtÞD

ð2Þ�
pq ðt0Þ

D E
ð21Þ
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The second significant assumption is that the noise in the system is stationary, and therefore the correlation functions only depend on the
time separation between the Wigner functions to be correlated, therefore:
Gkmpqðt; t0Þ ¼ Gkmpqðt0 � tÞ ¼ D
ð2Þ
kmðtÞD

ð2Þ�
pq ðt0Þ

D E
ð22Þ
The third assumption is that these correlation functions decay so fast on the time scale of the overall spin system evolution, that the latter
barely occurs and it is permissible to take the state vector out of the integral:
@ r̂ðtÞh i
@t

¼ �
X
kmpq

Z t

0
Gkmpqðt � t0Þ ^̂Q R

kmðtÞ
^̂Q Ry

pqðt0Þdt0
" #

hr̂ðtÞi ð23Þ
(because the implicit coarse-grained propagation schemes are known to be more stable than the explicit ones [22], we take r̂ðtÞ out of the
integral, rather than r̂ð0ÞÞ. We shall also drop the angle brackets on the density matrix for convenience. Using Eq. (13) to return to the Schrö-
dinger representation, we get:
@q̂ðtÞ
@t

¼ �i ^̂H 0 q̂ðtÞ �
X
kmpq

Z t

0
Gkmpqðt � t0Þ ^̂Q kme�i ^̂H 0ðt�t0Þ ^̂Q y

pqei ^̂H 0ðt�t0 Þdt0
" #

q̂ðtÞ ð24Þ
the integrand in this equation only depends on the time difference between t and t0, and a variable substitution s = t � t0 results in
@q̂ðtÞ
@t

¼ �i ^̂H 0 q̂ðtÞ �
X
kmpq

Z t

0
GkmpqðsÞ

^̂Q kme�i ^̂H 0s ^̂Q y
pqei ^̂H 0sds

" #
q̂ðtÞ ð25Þ
Finally, we note that, because Gkmpq(s) functions decay very fast within the [0,t] time interval, we can extend the upper integration limit to
infinity. The relaxation superoperator can then be identified as
^̂R ¼ �
X
kmpq

Z 1

0
Gkmpq sð Þ ^̂Q kme�i ^̂H 0s ^̂Q y

pqei ^̂H 0sds ð26Þ
and relaxation to a user-specified thermal equilibrium may be set up, if necessary, as a one-way coupling to the unit operator as described by
Levitt and Di Bari [23].

4. Efficient evaluation of the time integral

We are faced with the problem of computing superoperator-valued integrals of the following general type:
Z 1

0
GðsÞe�i ^̂H 0s ^̂Q ei ^̂H 0sds; ð27Þ
where G(s) is a correlation function and matrices ^̂H 0 and ^̂Q are very sparse. Historically, the standard way of evaluating this integral was to

diagonalize ^̂H 0 and expand Q̂ in its eigenstates, at which point it splits into a collection of analytical Fourier transforms [1,2,4]. This is easy
for small spin systems, but with matrix dimensions in excess of 105 in large-scale simulations [12–14], this approach becomes impractical,
the greatest constraint being memory – eigenvectors of sparse matrices are in most cases dense. A more detailed analysis is therefore in order

on what could be done to avoid ^̂H 0 diagonalization.
Firstly, we shall consider the constraints put on the behaviour of the various parts of Eq. (27) by the validity conditions of BRW theory.

The theory is rooted in the generalized cumulant expansion for the effective step Liouvillian [10]
ln exp �i
Z Dt

0

^̂H R
1ðtÞdt

� �	 

¼
X1
n¼1

ð�iÞn
Z Dt

0
dt1

Z t1

0
dt2 . . .

Z tn�1

0
dtn

^̂H R
1ðt1Þ ^̂H R

1ðt2Þ . . .
^̂H R

1ðtnÞ
D E

C
; ð28Þ
where convergence is guaranteed if the 2-norm (defined as the largest singular value [24]) of the dynamic Hamiltonian satisfies:
k ^̂H R
1ðtÞkDt ¼ k ^̂H 1ðtÞkDt < 1: ð29Þ
This condition may be derived from the root test [25] on the convergence of the series in Eq. (28):
lim sup
n!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�iÞn

Z Dt

0
dt1

Z t1

0
dt2 . . .

Z tn�1

0
dtn

^̂H R
1ðt1Þ ^̂H R

1ðt2Þ . . .
^̂H R

1ðtnÞ
D E

C

����
����n

s

6 lim sup
n!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ Dt

0
dt1

Z t1

0
dt2 . . .

Z tn�1

0
dtn

^̂H R
1 ðt1Þ ^̂H R

1ðt2Þ . . .
^̂H R

1ðtnÞ
D E

C

��� ���n

s

6 lim sup
n!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dtn ^̂H R

1ðtÞ
��� ���n

n

r
¼ ^̂H R

1ðtÞ
��� ���Dt ¼ ^̂H 1ðtÞ

��� ���Dt < 1 ð30Þ
where the norm k ^̂H 1ðtÞk is defined as the largest norm that ^̂H 1ðtÞ has within the [0, t] interval. Eq. (29) is quite pessimistic – in practice, the
alternating signs in Eq. (28) are likely to improve convergence, but for our purposes it simply means a safer accuracy estimate. BRW theory
truncates the cumulant expansion at the second term, so we must additionally have:



Table 1
CPU time statistics for diagonalization and exponentiation of static Hamiltonian commutation superoperators commonly encountered in liquid-state NMR spectroscopy.

Spin system State space State space dimension Wall clock time, ^̂H 0 diagonalization Wall clock time, exp ð�i ^̂H 0DtÞd

FNDB (1H,19F) Complete 256 0.06 s 0.01 s
Glycine (1H,13C) Complete (A1g of S3 	 S2)a 3200 120 s 0.4 s
Isoleucine (1H) SSR-5,3b (A1g of S3 	 S3)c 15,357 – 2.8 s
Strychnine (1H) SSR-5,3 32,818 – 5.4 s
Sucrose (1H,13C) SSR-5,3 88,393 – 15.1 s

a Fully symmetric irreducible representation of the S3 	 S2 symmetry group (three equivalent protons at nitrogen and two equivalent protons at Ca).
b State space restriction up to (and including) five-spin orders between directly J-coupled spins and three-spin orders between all spins within 4 Å of each other.
c Fully symmetric irreducible representation of the S3 	 S3 symmetry group (two groups of three equivalent protons at the two methyl carbons).
d Taylor approximation. The time step is chosen to satisfy Dt ¼ k ^̂H 0k�1 with Matlab’s normest sparse norm estimator used to compute k ^̂H 0k.
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Z Dt

0
dt1

Z t1

0
dt2

Z t2

0
dt3

^̂H R
1ðt1Þ ^̂H R

1ðt2Þ ^̂H R
1ðt3Þ

D E����
�����

Z Dt

0
dt1

Z t1

0
dt2

^̂H R
1ðt1Þ ^̂H R

1ðt2Þ
D E����

����; ð31Þ
in practice by at least two orders of magnitude, if the intention is to match the best available experimental accuracy, which is about 1%. Eq.
(31) uses the fact that, for centred stochastic processes, the second and third cumulants are equal to the second and third moments [9,10].
With this in place, Eq. (29) becomes significantly more stringent:
k ^̂H 1ðtÞkDt < 10�2: ð32Þ
The other approximation that was made in Section 3 – taking the integral limit to infinity – must also have a negligible effect on the accuracy,
meaning that
Z 1

Dt

^̂H R
1ð0Þ

^̂H R
1ðtÞ

D E
dt

����
�����

Z 1

0

^̂H R
1ð0Þ

^̂H R
1ðtÞ

D E
dt

����
���� ð33Þ
by the same two orders of magnitude (greater accuracy can, of course, be obtained by increasing this cut-off tolerance). For an exponentially
decaying correlation functions behaving asymptotically as exp (�t/sC), this yields sC < Dt/5. Together with Eq. (29) this produces the condi-
tion under which BRW theory is accurate to 1%:
^̂H 1ðtÞ
��� ���smax

C < 2 � 10�3; ð34Þ
where smax
C is the longest correlation time in the system. This is the point (about smax

C � 20ns in common protein dipolar networks and
smax

C � 20 ps in common aromatic radicals, actual numbers varying greatly from system to system) beyond which BRW theory is likely to
break.

This has implications for the integral in Eq. (27) – if the theory is not used outside of its validity range, we do not have to propagate

e�i ^̂H 0s ^̂Q ei ^̂H 0s very far – even with the Hamiltonian superoperator as large as the full NMR ^̂H 0, a few hundred nanoseconds is very manage-

able, the primary reason being that the step propagator exp½�i ^̂H 0Ds� is cheap to compute when k ^̂H 0kDs 6 1, because the various approx-

imations to exp½�i ^̂H 0Ds� converge very rapidly [26,27]:
e�i ^̂H 0Ds ¼
Pp

j¼0
ðpþq�jÞ!p!
ðpþqÞ!j!ðp�jÞ! �i ^̂H 0Ds

� �j

Pq
j¼0

ðpþq�jÞ!p!

ðpþqÞ!j!ðp�jÞ! i ^̂H 0Ds
� �j

þ O ki ^̂H 0Dskpþqþ1
� �

; ð35Þ

e�i ^̂H 0Ds ¼
Xp

n¼0
ð2� dn0ÞinJnð1ÞTn � ^̂H 0Ds

� �
þ O ki ^̂H 0Dskpþ1

� �
; ð36Þ

e�i ^̂H 0Ds ¼
Xp

n¼0

�i ^̂H 0Ds
� �n

n!
þ O ki ^̂H 0Dskpþ1

� �
: ð37Þ
where dnk is the Kronecker delta, Jn(x) are Bessel functions and Tn(x) are Chebyshev polynomials. The Chebyshev approximation in Eq. (36)
and Taylor approximation in Eq. (37) are generally faster for large sparse matrices, because they avoid computing a matrix inverse, which is
required for the Padé approximation in Eq. (35). Importantly, low powers of sparse matrices are also sparse, and sparsity can be improved
further by dropping the insignificant elements from the non-zero index after each multiplication operation. Table 1 gives some examples for
common NMR systems and Fig. 1 gives a timing comparison for a series of large Liouvillian matrices.

If numerical step propagators are cheap and the number of steps required is small, the obvious way to evaluate the integral in Eq. (27) is
by a numerical quadrature. For efficiency reasons, this cannot be a variable-step method, such as Gauss–Legendre quadrature – we would
ideally like to only compute the time step propagator e�i ^̂H 0Dt once and then reuse it. For a fixed-step method, a reasonable trade-off be-
tween expense and accuracy is offered by Boole’s O(h7) quadrature [28]:
Z t5

t1

f ðtÞdt ¼ 2h
45
ð7f ðt1Þ þ 32f ðt2Þ þ 12f ðt3Þ þ 32f ðt4Þ þ 7f ðt5ÞÞ �

8
945

h7f ð6Þðt1 þ hðt5 � t1ÞÞ; ð38Þ
where h is the point spacing, tk = tk�1 + h and h is a number between 0 and 1. The accuracy of integration is determined by the cut-off time
(since the integral in Eq. (27) is indefinite) and the point spacing h. If n is the desired relative accuracy and sC is the characteristic decay time



Fig. 1. Wall clock time (contemporary uniprocessor workstation) taken for the calculation of expð�i ^̂LDtÞ with Dt 
 ð1=2Þk ^̂Lk�1 for a series of linear spin chains containing
between 5 and 100 proton spins with strong nearest-neighbour J-coupling (with state space restriction [13,14] up to, and including, four-spin states between directly coupled
spins). Of the two polynomial approximations, the Chebyshev method, even though it requires fewer iterations, is slower on the wall clock than Taylor series due to greater
memory requirements.
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of G(t), then the upper integration limit tmax should be at least sC ln(1/n) and the number of integration steps (a conservative estimate) should
be
Fig. 2.
time pr
couplin
nsteps >
1

10
ffiffiffi
n6
p sC lnð1=nÞ

minfsC; kH0k�1g

 !7=6

: ð39Þ
In practical simulations �10�4 relative accuracy is usually sufficient, yielding tmax = 9sC and nsteps = 8. This puts the total cost of com-
puting the full relaxation superoperator to about 100 sparse matrix multiplications in Liouville space.

5. Illustrations

Table 1 illustrates the considerable difference between the time it takes to compute a step propagator and the time required to diag-
onalize the Hamiltonian superoperator. The primary advantage of exponentiation comes from the fact that low powers of sparse matrices
in Eq. (37) are also sparse. Because the operator density drops off rapidly with the size of the spin system [29] (this is also true in restricted
state spaces [13,14]) the sparse multiplications are fast. In contrast, the eigenvector array generated in the diagonalization is dense. An-
other advantage comes from the small memory footprint of sparse matrices versus the need to store the full eigenvector array in the case
of diagonalization. For this reason, the entire code base of the SPINACH library (including modules other than the rotations and BRW theory
that this paper deals with) does not contain a single diagonalization operation.

With the full relaxation superoperator in place, interesting relaxation-driven experiments can be simulated accurately for large spin
systems in liquid-state using the state space restriction techniques that we had previously reported [13,14]. An example of a NOESY spec-
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Theoretical NOESY and DQF-COSY spectra of strychnine (22 proton spins, assuming a rigid molecular structure at the DFT energy minimum) calculated using explicit
opagation in restricted Liouville space with the relaxation superoperator computed as described in the main text. 1H chemical shielding tensors, distances and J-
gs were obtained from a GIAO DFT B3LYP/EPR-II calculation.
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Fig. 3. Theoretical 376 MHz 19F inversion-recovery NMR spectra of 1-fluoro-2,4-dinitrobenzene plotted as a function of mixing time. 19F and 1H chemical shielding tensors
and couplings were obtained from a separate GIAO DFT B3LYP/EPR-II calculation.
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Fig. 4. Theoretical X-band ESR spectrum of para-fluorotoluene radical, computed using explicit time propagation in Liouville space with the relaxation superoperator
computed as described in the main text. Anisotropies of all interaction tensors were obtained from a GIAO DFT B3LYP/EPR-II calculation. The line width pattern (increasing
from left to right) is typical for Dg–Da cross-correlated relaxation.
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trum of the 22-spin system of strychnine is shown in Fig. 2 (isotropic tumbling, sC = 200 ps, mixing time set to 500 ms). A COSY spectrum is
also shown to illustrate the fact that all scalar couplings are handled accurately. The relaxation superoperator used to compute both spectra
includes all chemical shielding anisotropies, all dipolar couplings between spins closer than 4 Å and all cross-correlations between the ori-
entations of all interaction tensors – as a full relaxation superoperator rightly should.

The accuracy is further illustrated in Fig. 3 using the very well characterised cross-correlation behaviour in the 19F relaxation of 1-fluoro-
2,4-dinitrobenzene (FDNB). The agreement with experiment is almost perfect (c.f. Fig. 5 in the experimental paper by Grace and Kumar
[30]) – a tribute to the accuracy of modern DFT methods as well as BRW theory implementation described above. The theoretical hF̂ Zi relax-
ation rate is 0.384 s�1 and the DD-CSA cross-correlation rate between hF̂ Zi and 2Ĥð2ÞZ F̂ Z

D E
is �0.068 s�1 versus 0.4 s�1 and�0.067 s�1 deter-

mined experimentally [30]. The minor difference is likely due to the slight anisotropy in the rotational diffusion tensor of FDNB.
An ESR spectroscopy example (para-fluorotoluene radical, isotropic tumbling, sC = 80 ps) is given in Fig. 4. The transverse relaxation in

this system features a significant contribution from the cross-correlation between the anisotropies of hyperfine and g-tensors – this effect
is clearly visible in the simulated spectrum.
6. Conclusions

It appears that, in the context of spin relaxation theory, matrix exponentials giving small step time propagators are significantly cheaper
computationally than matrix diagonalization. This suggests an alternative path (using numerical integration rather than Fourier transforms)
through Bloch–Redfield–Wangsness theory, which is presented above and shown to be much faster, particularly for large spin systems.
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